Multiple choice 2 points each with 2 free misses

### Exam 2

#1-#8 ten points each

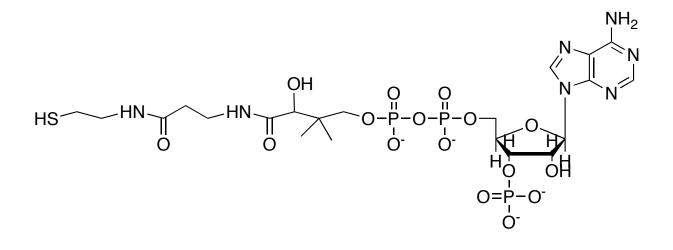
TUD Department of Chemistry Summer 2019 Page 1 of 6

- 1) a) Write the Michaelis-Menten equation.
  - b) Write the Lineweaver-Burke equation.
  - c) Define  $K_m$
  - d) Give a brief definition for the word "zymogen"
  - e) List three types of reversible enzyme inhibition and state the effect that each has on  $v_{\text{max}}$

f) What are the three amino acid residues present in the active site of chymotrypsin that are responsible for the enzyme's catalytic activity?

Multiple choice 2 points each with 2 free misses

### Exam 2


**TUD Department of Chemistry** 

**#1-#8 ten points each** 

Summer 2019 Page 2 of 6

a) Draw the structure of either NAD<sup>+</sup> or SAM. State the purpose of the cofactor that you chose to draw.

b) Below is the structure of Coenzyme A. Circle the ß-alanine group and place a square box around the portion of the molecule that is responsible for binding acyl groups.



Multiple choice 2 points each with 2 free misses

### Exam 2

TUD Department of Chemistry

#### **#1-#8 ten points each**

Summer 2019 Page 3 of 6

 Complete hydrolysis of a heptapeptide gave an amino acid composition of Asp, Leu, Lys, 2 Met, Phe and Tyr.

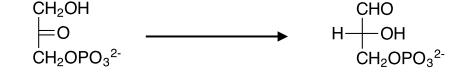
Treatment with Sanger's reagent and hydrolysis gave DNP-Phe.

Digestion of the heptapeptide with trypsin had no effect.

Chymotrypsin treatment of the heptapeptide yielded a dipeptide, a tetrapeptide, and a free amino acid. The tetra peptide contained Leu, Lys, and Met.

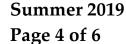
Cyanogen bromide treatment of the heptapeptide gave a dipeptide, a tetrapeptide, and free Lys

Two point bonus: Draw the structure of Sanger's reagent


#### **#1-#8 ten points each**

Multiple choice 2 points each with 2 free misses Questions 4-8 refer to glycolysis

- 4) What enzyme(s) use(s) NAD/NAD<sup>+</sup> as cofactors?
- 5) Draw the structure of the product that results when glyceraldehyde-3phosphate dehydrogenase acts on glyceraldehyde-3-phosphate.


6) Name the structure shown below:

7) What enzyme catalyzes the transformation shown below?



8) Draw the structure of fructose-6-phosphate.

 $CO_2^-$ H---OPO\_3^{2-} CH\_2OH





**TUD Department of Chemistry** 

### Exam 2

**TUD Department of Chemistry** 

#### Summer 2019

Multiple choice 2 points each with 2 free misses Page 5 of 6

| MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.                                                                                                                                                                                                                                                                                                                                                           |    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| <ol> <li>In peptide bonds, the bonds between         <ul> <li>A) C and N are shorter than typical C-N bonds.</li> <li>B) C and O are shorter than typical C=O bonds.</li> <li>C) C and O are longer than typical C=O bonds.</li> <li>D) C and N are longer than typical C-N bonds.</li> <li>E) Both A and C</li> </ul> </li> </ol>                                                                                                                               | 1) |  |  |
| <ul> <li>2) The hydrophobic cleft in globular proteins which bind substrate molecules is called the</li> <li>A) substrate pocket</li> <li>B) modulator site</li> <li>C) activity site</li> <li>D) oligomeric site</li> <li>E) active site</li> </ul>                                                                                                                                                                                                             | 2) |  |  |
| <ul> <li>3) The initial velocity of an enzyme reaction (v0) describes</li> <li>A) the concentration of the enzyme at maximal velocity.</li> <li>B) the concentration of substrate at maximal velocity.</li> <li>C) the rate of the reaction at when the substrate and enzyme are first mixed.</li> <li>D) the concentration of both at the start of the reaction.</li> </ul>                                                                                     | 3) |  |  |
| <ul> <li>4) It is difficult to determine either K<sub>m</sub> or V<sub>max</sub> from a graph of velocity vs. substrate concentration because <ul> <li>A) the points on the graph are often not spread out on the hyperbola.</li> <li>B) the graph is sigmoidal.</li> <li>C) an asymptotic value must be determined from the graph.</li> <li>D) too much substrate is required to determine them.</li> </ul> </li> </ul>                                         | 4) |  |  |
| <ul> <li>5) The reason to rewrite the Michaelis-Menten equation (such as the Lineweaver-Burk plot) is to A) calculate catalytic proficiency.</li> <li>B) calculate V<sub>max</sub> and K<sub>m</sub>.</li> <li>C) visualize reactions better.</li> <li>D) form enzyme kinetic data as a hyperbolic curve.</li> </ul>                                                                                                                                             | 5) |  |  |
| <ul> <li>6) In the Lineweaver-Burk plot of an enzyme reaction, the K<sub>m</sub> is given by the</li> <li>A) reciprocal of the <i>y</i>-intercept</li> <li>B) negative reciprocal of the <i>x</i>-intercept</li> <li>C) <i>x</i>-intercept</li> <li>D) <i>y</i>-intercept</li> </ul>                                                                                                                                                                             | 6) |  |  |
| <ul> <li>7) An inhibitor binds to a site other than the active site of the enzyme. Which statement below correlates with this observation?</li> <li>A) It must be a competitive inhibitor.</li> <li>B) It could be noncompetitive or uncompetitive inhibition.</li> <li>C) The inhibition must be irreversible.</li> <li>D) It could be irreversible, competitive, noncompetitive or uncompetitive. The data do not relate to the type of inhibition.</li> </ul> | 7) |  |  |

**CHM 3352** 

#1-#8 ten points each

| CHM 3352                                                                                                                                                                                                                                                                                                                                               | Exam 2<br>TUD Department of Chemistry                                      |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                        |                                                                            |     |
| #1-#8 ten points each                                                                                                                                                                                                                                                                                                                                  | Summer 2019                                                                | -   |
| Multiple choice 2 points each with 2 free misses                                                                                                                                                                                                                                                                                                       | Page 6 of 6                                                                |     |
| <ul> <li>8) The substrate specificity of serine proteases is prim</li> <li>A) distinct backbone conformations of the indiv</li> <li>B) a specificity pocket in the protein.</li> <li>C) the positions of specific side chains of serine,</li> <li>D) A and B</li> <li>E) A, B and C</li> </ul>                                                         | idual proteins.                                                            | 8)  |
| <ul> <li>9) The role of ser-195 in chymotrypsin cleavage of a period</li> <li>A) proximity effector.</li> <li>C) weak nucleophile.</li> </ul>                                                                                                                                                                                                          | eptide bond is that of a(n)<br>B) acid catalyst.<br>D) strong nucleophile. | 9)  |
| <ul> <li>10) Active holoenzymes are formed from in the A) apoenzymes; inactive holoenzymes</li> <li>B) apoenzymes; proteins</li> <li>C) proteins; cofactors</li> <li>D) cofactors; proteins</li> <li>E) apoenzymes; cofactors</li> </ul>                                                                                                               | ne presence of                                                             | 10) |
| <ul> <li>11) What is the role of the magnesium ion in kinases the donate phosphoryl groups?</li> <li>A) promote ionization of bound water</li> <li>B) produce an electrophilic attack on the substration of the substrate to be phone D) maintain the configuration of the holoenzym</li> <li>E) shield the charged phosphate groups of ATP</li> </ul> | ate<br>osphorylated                                                        | 11) |
| <ul> <li>12) How many ATP molecules are consumed in glycoly</li> <li>A) 0; ATP is produced, not consumed, by glycol</li> <li>B) 1</li> <li>C) 2</li> </ul>                                                                                                                                                                                             | • •                                                                        | 12) |

- C) 2 D) 3
- E) 4